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Abstract 

A s imple  r e l a t i onsh ip  has  been  deve loped  for  deter-  
m in ing  va lues  for  the m o d u l i  o f  no rma l  o rde r  devia tes  
for  s ample  size n f rom the  values  of  the  n o r m a l  o rde r  
deviates  for  s ample  size 2n + 1. This  r e l a t ionsh ip  can  
be  expressed  as a quad ra t i c  ' co r rec t ion '  to the n o r m a l  
o rder  values.  This  a p p r o x i m a t i o n  is in error  by  <0 .001  
for  values  o f  n > 8. 

0108 -7 673 / 87 / 040550-03 $01.50 

Introduction 
A l t h o u g h  the  use of  p robab i l i t y  plots  for  da ta  and  
p a r a m e t e r  ana lys i s  is well  k n o w n  in c r y s t a l l o g r a p h y  
( A b r a h a m s  & Keve,  1971; H a m i l t o n  & A b r a h a m s ,  
1972; A b r a h a m s ,  1974; A b r a h a m s ,  Berns te in ,  Bugg 
& Hvos le f ,  1978), p rog rams  for  p e r f o r m i n g  the 
ana lys i s  are not  rou t ine ly  i n c l u d e d  in the c o m m o n l y  
ava i lab le  c rys t a l l og raph ic  p r o g r a m  packages .  Such a 
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program was needed for work being done in this 
laboratory; so the design and structure of the required 
algorithms were explored. 

A program for probability plot analysis, as applied 
to crystallographic problems, needs to incorporate 
algorithms for calculating: (i) the percentage points 
of the normal distribution, P(Xi), (ii) the values for 
the ranked normal deviates, se(i/n), and (iii) the 
values for the ranked moduli of normal deviates,. 
~l/2(i/n). These algorithms need to be accurate, fast 
and general if they are to be useful in a program 
intended for routine use. Examination of the litera- 
ture showed published methods for accurately 
approximating the values needed in (i) (Beasley & 
Springer, 1977) and (ii) (Royston, 1982) but did not 
reveal any procedure for calculating the quantities in 
(iii) to similar levels of accuracy. Only two methods 
seemed to be available for acquiring ~1/2 values: 
approximation to the values with the normal distribu- 
tion curve, i.e. seu2-~ Xi, or use of tables of ~:~/2 values 
for various sample sizes as listed in the literature 
(International Tables for X-ray Crystallography, 1974). 

In the first of these methods the required values 
may be approximated by that X~ which is defined by* 

P ( X i ) = ( 6 n - 3 i + 2 ) / ( 6 n + l )  (1) 

but, as has been pointed out (Hamilton & Abrahams, 
1972), values calculated by this type of approximation 
are appreciably in error, particularly for the extreme 
values of i, for values of n up to 400. 

The second method, using tables of ~:1/2 values, 
avoids any calculations but the tables do not list all 
sample sizes nor are all the values of the larger sample 
sizes included in the tables. 

These difficulties led to the development of a pro- 
cedure, described herein, that does not require the 
numerical integration of the defining equation but 
does accurately determine the values of ~1/2(i/n) for 
all reasonable sample sizes ( n >  10) and for any 
desired value of i in that sample size. 

Method of calculation 

It was noticed that, to a first approximation, the values 
for ~l/2(i/n) are similar to the values for ~(i/j) where 
j = 2n + 1. Thus it was felt that developing a correction 
term as a function of i and n would suffice to allow 
reasonable values for ~l/2(i/n) to be calculated from 
the values for ~(i/j). A series of plots of [~ ( i / j ) -  
~l/2(i/n)] versus i (with the ~ and ~t/2 values deter- 
mined by numerical integration) for selected values 

* The original approximat ion of  Hamil ton & Abrahams (1972) 
is ( 2 n -  2i + 1) /2n which is based on using the two-tailed cumula- 
tive normal distr ibution function.  A more accurate approximat ion  
is given by Abrahams (1974) (see the footnote on p. 266) which 
when modified to use the one-tailed cumulative normal  distr ibution 
function gives the equat ion as presented. 

Table 1. ~1/2 values for some small sample sizes and 
i = 1  

n ~:1/2 (approx.)* ~:1/2 (approx.) t  ~'1/2 (exact)¢ 

2 1-019 1-114 1-128 
4 1-405 1.460 1.465 
6 1.606 1-652 1.654 
8 1-741 1.782 1.783 

10 1.841 1.880 1.881 
12 1.920 1.958 1.958 

* Calculated using approximation (1). 
t Calculated using approximation (2) with the values of g calculated by 

the approximation of Royston (1982). These ~ values differ from the exact 
values by as much as 0.003 for n = 2 although the difference is <0.001 for 
n>8.  

Calculated by numerical integration. 

of n from 10 to 120 showed that the difference could 
be expressed, to a reasonable approximation, as a 
quadratic function of i, a + bi + ci 2, where the values 
of the coefficients a, b and c are constants for any 
given sample size n. Additional plots of each of these 
coefficients as functions of n showed that they could 
be expressed by the following equations: 

a = 0.071n -°'9s° 

b = 0.099n -1.877 

c = - exp  ( -2 .090-2 .856  In n), 

which leads to the full approximation being expressed 
a s  

~l /2( i /n )=~( i / j ) - (a+bi+ci2) .  (2) 

The discrepancies between the values for ¢1/2(i/n) 
calculated by the above method and those determined 
by numerical integration are largest for the smallest 
sample sizes and for the largest deviates within a 
given sample size. Thus the error in ~1/2(i/n) reaches 
a maximum value of 0.014 when n =2  and i = 1. This 
error is reduced to less than 0.001 by the time n = 8. 
Table 1 lists the value of ~1/2 for i =  1 for some of 
the smaller sample sizes. 

Concluding remarks 

It has been shown that equation (2) yields accurate 
values for the ranked moduli of normal deviates for 
all values of i and n in a computationally effective 
manner. Use of this method of approximation in a 
computer program eliminates the need for time- 
consuming numerical integration routines or the 
internal storage of large tables of values for all the 
likely sample sizes. 

A Fortran program has been written to calculate 
both ¢ values [using the approximation of Royston 
(1982)] and, incorporating the methods discussed 
herein, the ¢1/2 values. This program functions in 
conjunction with the files of the Enraf-Nonius (1979) 
SDP program package to produce a variety of proba- 
bility plots. A copy of the program is available from 
the author upon request. 
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Abstract 

In the classical two-crystal system with mono- 
chromator (M)  and specimen (c) crystal axes 
parallel, measurement with zero-wavelength disper- 
sion (ZWD) is possible at only one value of scattering 
angle, 0~ = 0A4, the so-called 'parallel '  condition. The 
procedure is highly selective and therefore of limited 
applicability. If one examines the situation where the 
to rotation axis of c is rotatable (4,) about the mono- 
chromator beam incident on c, the condition can be 
generalized so that appropriate choice o f ~  will allow 
ZWD measurement anywhere in the range 0 - 0 ~ - <  
0M, thus releasing this valuable procedure from its 
earlier severe constraints. The setting condition for 

is cos • = - ( t a n  0c)/(tan 0M). 

Introduction 

Recently, we have shown how measurements of 'film' 
profiles, 

I(z~20) = I(z~to, a20(°~)d(z~to), 
Aw l 

can be carried out so that they do not involve 
wavelength dispersion (Mathieson & Stevenson, 
1986b-hereaf te r  MS86b). With this procedure, 
Bragg reflections from a small single crystal, c, are 
intercomparable irrespective of the scattering angle, 
0c. As a result, variation of the reflectivity curve 
[=mosaic  spread distribution for imperfect crystals; 
see Mathieson (1984)] from reflection to reflection 

* Part of this work was carded out during an exchange visit with 
Dr B. P. Schoenborn of the Biology Department, Brookhaven 
National Laboratory, Upton, NY 11973, USA with support from 
the Australian Government Department of Science under the 
US/Australia Science and Technology Agreement. 

can be identified and a more direct estimation of the 
reflectivity curve for individual reflections in a given 
orientation is feasible (see Mathieson & Stevenson, 
1986a). The procedure proposed in MS86b for "film' 
profiles is applicable also where a monochromator is 
involved. 

'Counter' profiles-examination from the Aw, A20 
viewpoint 

The question arises as to whether a similar type of 
capability is feasible for the measurement of 'counter '  
profiles, 

l(Ato) = ai°2- I(Ato, A20~°))d(A20). 
A20t 

The analysis in MS86b shows that, for the non-mono- 
chromator case, the wavelength dispersion com- 
ponent makes a contribution at all 0c (except 0c = 0 °) 
and so, apart from that trivial case, the zero- 
wavelength-dispersion (ZWD) condition is not 
attainable. 

When a monochromator  crystal is introduced 
between the source and the specimen single crystal, 
interaction of the dispersion of the two crystals offers 
the potential to overcome that limitation. In the 
classical treatment of the two-crystal spectrometer 
(diffractometer) (Compton & Allison, 1935) which 
deals with extended-face crystals and the configura- 
tion where the two crystal axes are parallel, it was 
shown that the ZWD condition does exist but that it 
is highly selective, occurring only at the so-called 
'parallel '  condition where 0c = 0M. At any other value 
of 0~, the wavelength dispersion makes a systematic 
contribution to the 'counter '  profile. 

Consider (Fig. 1) the more general situation where 
the to rotation axis of the small specimen single crys- 
tal, c, and hence the associated zero-layer diffraction 
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